®

Check for
updates

Simulation of Volunteer Computing
in a Desktop Grid System

Ksenia Petrenko'® and Ilya Kurochkin?®)
! National Research University Higher School of Economics, Moscow, Russia
kseniapetrenko6@gmail.com
2 Institute for Information Transmission Problems of Russian Academy of Sciences,
Moscow, Russia
qurochkin@gmail.com

Abstract. BOINC is a platform for volunteer computing (VC) devel-
oped by the University of California, Berkeley. It allows scientific work-
flows to be performed on non-dedicated devices. The benefits this plat-
form provides include low cost and computational power which is compa-
rable to that of supercomputers. BOINC development can be facilitated
with help of hypothesis testing in simulators of volunteer computing.
In this work one of them was explored which is stated to be the most
complete BOINC simulator. We describe our experience with it, what
modifications have been made and how it was validated using the real
data gathered by RakeSearch project, along with running experiments
in it.

Keywords: Volunteer Computing + BOINC - ComBoS - Simulator

1 Introduction

BOINC [1] is a system for performing scientific tasks using volunteers’ devices.
These devices can only be utilized partially and for a limited amount of time,
they are highly heterogeneous and their performance is hard to predict. Never-
theless, they have significant potential [2] and their cumulative processing power
currently reaches the order of PetaFLOPs. In addition, it costs less than renting
hosts in the cloud [3]. Thus, BOINC is appealing to scientific teams who have
large amount of computation to be done. BOINC specializes in high-throughput
computing, and the teams need to express their jobs as sets of parallel, indepen-
dent tasks [5].

Testing hypothesis can be essential for the development of a system [20]. For
projects like BOINC, it becomes difficult due to the large number of hosts partic-
ipating in computing and their unpredictable behavior. In these cases simulators
and emulators are used [4]. An emulator fully describes the system by exploiting
the code of the real platform. However, it may include unnecessary components
that only make the emulator more complex for researchers. A simulator is sim-
pler and easier to set up, but it requires maintenance to stay up to date with
the real system. Otherwise, it becomes obsolete over time.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
V. Voevodin et al. (Eds.): RuSCDays 2024, LNCS 15407, pp. 120-134, 2025.
https://doi.org/10.1007/978-3-031-78462-0_9

Simulation of Volunteer Computing 121

An important detail of a simulator is its flexibility, i.e., how easy it is to add
new code or change a part of the system. This is helpful for maintaining the
simulator, as well as for studying BOINC. Documentation and neat code are
key components here.

In addition, a simulator needs to work correctly no matter what its input
data or configuration is. It is possible that the data passed to the tool differs
from the real data, and the simulator has to process it without crashing due to
an error. Otherwise, researchers won’t be able to test any arbitrary hypothesis.

Finally, the closer a simulator is to the real system, the more parts can be
investigated and taken into account. However, this closeness can increase the
simulation time.

2 Background

2.1 BOINC

BOINC provides ready code for both the server and client sides. A team that
wants to use BOINC needs to express a computing job as a set of independent
tasks. The volunteers’ devices cannot be blindly trusted, as tasks may never
finish, finish with incorrect or correct results [6]. Each task can be replicated
to increase the likelihood of completion and to compare results across different
hosts. The latter can be used when there is no way to prove the correctness of
the returned output. In this case, results can be compared with each other to
gather a quorum with the same values. Later in the article, we will refer to a job
as a workunit and its replicas as instances of a workunit.

The scientific team needs to set up the server side, which consists of a sched-
uler, assimilator, validator, and database, where the project’s state is saved. The
state includes information about various types of project jobs, created and dis-
patched tasks, as well as parameters of participating hosts, such as average CPU
power, available disk space, etc.

2.2 Tools for Researchers

SimGrid [7] is a general library used for simulations of distributed systems (hosts,
network, communication, computations). Many authors chose it for their own
simulators.

Both emulators and simulators have been implemented for BOINC. However,
many simulators are not available for research, as it will be seen. ComBoS [§]
is known as the most complete simulator. It enables the setup of both client
and server sides using a configuration file containing projects and client clus-
ters characteristics. Another tool, SImBOINC, focuses on the client side, but
unfortunately, the code is no longer available. [9] describes ways to improve
SimGrid’s performance in VC simulations, what can be useful in general even
though the code isn’t accessible. SInBA [10] utilizes BOINC project traces to
simulate components. It allows researchers to investigate server scheduling but
not client scheduling. Furthermore, the code is not provided.

122 K. Petrenko and I. Kurochkin

EmBoinc [11] is an emulator that reuses a project’s server code and simulates
clients using collected traces. The maintenance effort is minimal. The limitations
of EmBoinc include its ability to set up only a single project and the absence of
client scheduling.

2.3 ComBoS

ComBoS is one of the simulators with available source code. It uses SimGrid to
model hosts, network and tasks. All parameters for simulations are set in the
configuration file. For each project, they are task duration, input and output
file sizes, quorum size, acceptable delay in execution, and other parameters.
The client side is represented as clusters with hosts that request input files and
download them and other hosts that execute tasks. When hosts’ CPU powers
may be passed as a list, disk capacity, hosts’ availability and nonavailability are
simulated using distributions.

ComBoS measures the number of FLOPs computed, the number of sent and
received results, how much of them are valid, those with errors, and those with
missed deadline. Additionally, it shows the load on scheduling and data services.

It can be helpful to note, that in ComBoS tasks can be halted if there are
others with higher priority (for instance, deadline is close). Halted tasks then
are resumed from the moment when they were stopped, not from the beginning.
There is no system with checkpoints.

Several limitations may prevent the use of ComBoS. Hosts are generated with
only one CPU, therefore there is no CPU scheduling. Secondly, when a client
chooses what tasks to request, it follows a “debt-based” policy, which has been
deprecated in BOINC. Lastly, there are two types of clients in ComBoS’s cluster:
ones that download input files and others that perform computations. In the real
world, each volunteer’s host both downloads data and computes tasks.

3 Running the Simulator

Given all options, using ComBoS as a BOINC simulator is reasonable. In the
next part, our experience with it will be described.

The first difficulty was associated with installing SimGrid to run the simu-
lator. SimGrid is an actively developing project, and at the moment of writing
this article, the 35th version had been released, while ComBoS supported only
the 11th one. There are notes in Changelog that bugs have been fixed since the
11th version. It hasn’t been checked but this could potentially impact the sim-
ulation. Even after installing the 11th version and making some modifications
to the configuration file, the simulator failed with an error in the SimGrid code.
That’s why this dependency was switched to the latest version. This involved
updating the old API, which was deprecated, to the new one.

The original simulator was implemented in a single file with 4000 lines of code
in the C programming language. The code was written in a highly asynchronous
manner using message queues. This made difficult to understand the logic behind

Simulation of Volunteer Computing 123

the code. Besides this, there was no documentation and very few comments. For
instance, there were components such as data client, data server and data client
server with no description of what each of them does. The language was switched
to C++. Also, the main file was split into the structured project, and comments
were added to describe each components. The block diagram with workflows was
drawn to aid in understanding [12].

Moreover, after altering simulation’s parameters in the configuration file,
the program crashed with segmentation faults. The code had several undefined
behaviors (UB) and bugs. Many of them were found with valgrind [13]. At some
point during the development, the program stopped crashing when the configu-
ration file was changed. Although it still happened later during experiments.

There was another strange behavior in ComBoS. When a client requested
a certain amount of work in FLOPs from a scheduling server, the scheduler
selected one instance of an available workunit and duplicated it until the total
computation cost met the request. It was changed to the policy where the server
chooses several instances of different workunits that sum up to the requested
FLOPs.

As it can be seen, ComBoS was hard to understand and modify, and it didn’t
work with some configurations. In addition, at the current moment, maintenance
is stopped because ComBoS implements a “debt-based” scheduling strategy that
was removed many versions ago in BOINC.

To verify the modified simulator, it can be compared with the original version.
However, there are several factors that may cause difference between simulations.
First of all, it’s the SimGrid version: as this dependency is crucial for ComBoS,
differences between its versions may have a significant impact. Both initial Com-
BoS and the modified version were run, using the configuration file provided in
the git repository. In the original version, network was not a bottleneck, but in
the modified one, it was. Next, the logic behind the code was changed because it
was incorrect in some places. For instance, the authors of ComBoS calculated a
task’s deadline since its creation time rather than its sending time. Thus, many
tasks were marked as received too late. Another example was that if the sched-
uler didn’t manage to send even a single task, the client stopped querying the
project altogether. In the BOINC the client retries its request with exponential
backoffs so that when available tasks appear again, the client can continue to
work.

4 Verifying the Simulator

Another method to verify the simulator is to test its work with data from a real
project. In our case, the data was provided by RakeSearch [14,15]. It includes
records from the project’s database over the week. Firstly, it is necessary to
calculate dataset features in order to set up a configuration file for a simulation.

Figure1 illustrates tasks that were created, computed and sent back to the
server. The green lines mark the period when a large amount of them were
created and executed. Particular this period was simulated with ComBoS. The
red lines indicate the period when many tasks were received after their deadlines.

124 K. Petrenko and I. Kurochkin

17500
15000

12500

10000
7500 2000
5000

gl AR BTV (Y I

T T T + 0 i
1.7056 1.7058 1.7060 1.7062 1.7064 1.7056 1.7058 1.7060 1.7062 1.7064
seconds since epoch le9 seconds since epoch le9

number of results
number of results

Fig. 1. Tasks created during the period (left) and tasks with correct results received
by the server (right)

N clients, which execute tasks, and N data clients, which download input
files, were set up in order to simulate N real clients.

Parameters for CPU (power and quantity) can be found in the database.
ComBos simulated only one CPU per host. Several approaches can be tried -
either increasing the power by a factor of k, where k is the number of CPUs,
or duplicating the host & times. This will be investigated further. For now, each
host is configured with only one CPU.

One of the tricky moments was with the gbw parameter - the bandwidth of the
network in the cluster of clients. An incorrect value can easily make the network
a bottleneck, which doesn’t accurately represent the real-world scenarios. With
the default value of 10Mbps, the number of finished tasks was 3336 for 100 clients
and 3328 for 200 clients. After that, the gbw was set to 50 Mbps and observed
7434 tasks for 100 clients and 14250 for 200 clients. This is more plausible because
doubling the number of clients results in a doubling of tasks. If it is required to
test a bottleneck, a different network configuration can be used and the SimGrid
documentation can be viewed [16] in addition to the code.

The next parameter is related to a model of availability. The data from
RakeSearch didn’t include exact periods of availability and unavailability. It
provided only the percentage of time each host was available for computations.
There is a paper [17] where authors investigated these periods using data from
SETIQHome and derived distributions for them. The necessary distributions
were supported in ComBoS to enable the generation of these periods for hosts.
Then the percentages of time each host executed tasks were calculated, sorted
by values and plotted along with the parameters from the dataset (Fig.2). The
distributions were sufficiently close.

The last parameter is the amount of disk space dedicated for the project.
Initially, it was generated for each client by setting a distribution in the config,
but it was inconvenient as the distribution is hard to fit to the real data. Now
users can create a file with specified values to configure this parameter, similar
to CPU power.

Simulation of Volunteer Computing 125

® real
® simulated

B
o

2
®

o
o
°

percentage of time hosts is available for computations
o
S

o
o

=

o 50 100 150 200
host index

Fig. 2. The percentage of time when hosts were available for computation in the sim-
ulator and from the database

Unfortunately, the fraction of a volunteer’s computational power that was
dedicated to the project was unknown. This amount is calculated via the
resource_share parameter, which is set up by a user for each project they par-
ticipate in. There was no information about other projects, therefore it was not
possible to calculate the fraction. If the simulation results closely match the
characteristics of the real data in terms of order, it will be satisfying.

Finally, the simulation was run and metrics were compared (table 1).

Table 1. Metrics for comparison simulated and real data

Result state number of results in the dataset number of results in the simulation
Results valid 176,620 87,759

Results failed [1228 894

Results too late/1051 2

It appeared that the simulator produced valid results that are half of what is
desired, with a total computation of 8.767-107 GigaFLOPs compared to 2.035-10%
GigaFLOPs in the dataset. The main reason for discrepancy may be that only
one CPU was simulated, whereas tasks on the real clients run simultaneously
on multiple CPUs. Results received too late differed a lot too, prompting us to
investigate the cause.

5 Characteristics of the Simulator

5.1 Resource Share and Timelines

An experiment was conducted involving two projects: one with long tasks and
other with short ones. Different resource_share parameters were assigned for

126 K. Petrenko and I. Kurochkin

these projects so that they sums up to the same number. There was only one
client for simplicity. The seed for a random generator was the same for each
run. The generator was used to get periods of availability and unavailability for
clients. The expectation was that increasing the resource_share of one of the
projects would lead to an increase in the number of completed tasks for that
project. Instead, the results are shown in the Fig. 3.

Proportion of results based on priorities
140 A

-
130
120
32
110 4 .

100

90 4

80

nvalidr for larger tasks

70 A -3
41 ™
L]

60 1, - - - - - - - -
150 200 250 300 350 400 450 500 550
nvalidr for smaller tasks

Fig. 3. Amount of tasks, executed for each of the projects during different runs of the
experiment

The X-axis (OX) represents the number of tasks completed for a project
with shorter duration, the Y-axis (OY) - with longer tasks. Labels follow the
format {resource_share_quick} — {resource_share_long}. It was expected that
the higher the resource_share, the more tasks would be computed for a project.
However, the graph illustrates that points aren’t ordered and the maximum value
for the project with shorter tasks is reached when the resource_share is equal
to two, rather than four.

Up to that point, there was no instrument to understand precisely how a host
executed tasks, so it was developed. Logs were added to track what each host did
at each moment of time (what project it executed, or if it’s idle or unavailable)
and recorded this information in a file. Subsequently, a Python script processed
these logs and generated a timeline similar to ones shown in the Fig. 4.

The Y-axis represents the resource_share for a project with shorter tasks,
X-axis - time in the simulation in seconds. Green segments denote the quick
project, blue ones - the project with longer tasks. Red color means that the
host was available but wasn’t busy with any project. Black segments represent
periods of unavailability. In short, our expectation was that the higher timeline,
the more green color it would have. However, different results were obtained.

Moreover, periods of unavailability were different, even if the same seed
was set for each run. It seemed that not only resource_share varied between
runs. Upon debugging, it was found out that a single random generator was

Simulation of Volunteer Computing 127

4.0
35
3.0
25
2.0
15

10

4000 6000 8000 10000 12000 14000 16000 18000

Fig. 4. Timelines for runs of the experiment

used for both type of clients and it was a problem. When the resource_share
was changed, it affected the behavior of data clients, which downloaded input
files, causing the generator to be called more or less frequently across different
runs. That’s why it also generated different period of unavailability for clients,
which executed tasks, and different black segments were seen in timelines. By
employing multiple random generators, the situation was improved (Fig. 5).

4.0
35
30
25
2.0
15

10

°

2000 4000 6000 8000 10000 12000 14000

Fig. 5. Timelines for runs of the experiment

Finally, the periods of unavailability were the same, but there was another
problem - the large red segment in the forth run. This indicated that the host
didn’t perform computations. After a small investigation, the code was fixed and
it disappeared.

Lastly, it still was not seen that the higher the timeline, the more green
segments appear. It turned out that the short tasks were too small initially,

and when the duration of tasks was scaled up, the desired behavior was finally
achieved (Fig. 6).

o

5000 10000 15000 20000 25000 30000 35000

Fig. 6. Timelines for runs of the experiment

128 K. Petrenko and I. Kurochkin

In summary, several places in ComBoS were fixed thanks to these timelines.
They were used a lot during other experiments to monitor the activities of hosts.

5.2 Results Sent Too Late

During verification the simulator generated too few results received too late. It
was decided to investigate why there were so many results in the dataset with
this state.

Working with the same dataset, it can be shown that these tasks were com-
puted around the same time as others, but they remained on hosts for much
longer. Besides that, they were more of an exception than a rule: hosts sent far
fewer results too late compared to those that met deadlines. These late results
usually were received by clients right before the end of availability period.

Tasks in RakeSearch aren’t too long, typically lasting up to 15 min, and their
deadlines set for 4h. That’s why the situation with missed deadlines doesn’t
have a large impact on the system - after four hours the task will be resent to
another host and finish before deadline with high probability. Projects like Ein-
stein@Home, which have tasks with higher durability, usually set deadline longer.
What can be problematic is the end of an experiment if there is a requirement
to complete tasks as soon as possible.

Returning to ComBoS, there were only two results sent after the deadline.
The problem was partially with the metrics, as clients could cancel a task’s
execution, if it can’t be finished in time, and such tasks weren’t accounted for
by the system. They started to be tracked but there were only 67 cancelled
results, what is too few as well. It means that the model of availability was not
approximated sufficiently.

Since tasks are short, the periods of availability for a host can be approxi-
mately extracted from graphs that depict task sent and received times (Fig. 7).
The Y-axis represents time, red points indicate task sent times to clients and
blue points - times the server received results back. It’s possible that during
gaps clients contribute to other projects, but if only one project is simulated,
they’re equivalent to periods of unavailability. Figure 7 shows different patterns
of unavailability, and for more accurate simulations, they have to be modeled
separately by creating several clusters for each pattern. However, right now there
is no tool to derive parameters for the config from such graphs.

5.3 Metrics

In addition to timelines described in Subsect. 5.1, it was beneficial to measure
inner work via metrics to understand the simulation better. For instance, the
time required to compute a task was measured. During the process, a strange
behavior was encountered: tasks with the same duration were executed for dif-
ferent lengths of time on the same host. It indicated another bug in ComBoS.
All tasks were executed within a separate actor [18] and had a data type Exec.
When the simulator modeled period of unavailability, the actor was suspended

Simulation of Volunteer Computing 129
+1.706€9 +1.7061e9
®
180000 4 sent I'y ® sent
* received * received
80000
160000
70000
140000
= ‘ <
]]
8 s s 60000
g 120000 . L] g
©) °
£ 100000 {) £ 50000 1
80000 - 40000
60000 1
30000
)
e O S & & & & &® o o o o N ®
S HSHFHF S &S oy oy s < 0~ §
L RN A A ¥ ¥ ° § 3 g
+1.706€9 result's index in the dataset +1.706e9 result's index in the dataset
180000
. &
250000 sent. 4 sent.
* received * received
160000
200000 A 140000 -
= le ‘ 4
] S
g ~
b5 e & 120000
o L
£ 150000 - 2
@ H
g £ 100000
=1 =]
100000 - 80000 4 ,
P
60000
50000
o o o o o o o o o o © ® ® o o o
N\ N\) O O))) O N N O O) O)
S & S S S s & & & & & &S
A R A O . 17 . T & P F P

result's index in the dataset

result's index in the dataset

Fig. 7. Approximation of unavailability model via sent_time and receive_time

but not Exec-s. SimGrid solves a set of linear equations [19] to advance the
time of the simulator until the next event. In this set the task, which wasn’t
suspended, “continued to be executed” even though the client was unavailable
for computation.

Even after fixing this behavior in ComBoS, the simulator kept to act pecu-
liarly. The tasks continued to progress after the second call of suspend(). In this
case, the bug was found in SimGrid and it was reported.

To conclude, those metrics proved to be helpful, and they were kept in
the code for the next experiments.

130 K. Petrenko and I. Kurochkin

6 Verification of a Single Host Simulation

In the sections above, the simulator was verified via observing its inner work

(Subsects. 5.1 and 5.3). Also, it is not trivial to fit the availability model for

hosts (Subsect. 5.2). In this section, the work of a single host will be simulated.
First of all, several hosts have been chosen from dataset (Table 2).

Table 2. Hosts from RakeSearch for verification

ID/CPU number|/CPU power in GigaFLOPs per second
4 3.575967
B 32 6.836439

>

The median execution time of tasks and their quantity were used for com-
parison with the simulation. Instead of modelling availability periods, it was
calculated approximately how much time the host computed tasks for BOINC
and configured a simulated client to work for this duration. The results are
presented in Table 3.

Table 3. Metrics compared with the simulations

metric A B

dataset simulation |dataset |simulation
50% of execution time 348.83 275 184.22 142
completed 434 350 12304 746
GigaFLOPs 575.47 - 10%/341.71 - 103(15.20 - 10°/0.73 - 10°

The execution times are close, but it isn’t true for the number of tasks. Tasks
can be executed simultaneously on several CPUs, so several polices were tried
to simulate this for host B. When the host power was multiplied by the number
of cores, 1840 completed results were obtained. When hosts were duplicated by
the number of cores, the simulation generated 23718 results. The second option
appeared to be better. The difference could be explained by the fact that host
B might participate in multiple projects, so half of the time is spent on other
projects. However, there were hosts that were dedicated solely to RakeSearch,
yet the simulation also generated twice the amount of work compared to what
they computed during the measured period. This led us to another assumption
- hosts might not be fully utilized.

Hosts were selected from the database based on those for which CPU power
could be obtained, and among them, those that worked all the time during
the period described in Sect. 4 (according to graphs similar to Fig. 7). For these

Simulation of Volunteer Computing 131

hosts, the total amount of work computed (T'C;..q;) was calculated, as well as for
how long they worked (7), and the number of CPU cores they possess (ncpus).
Using this data, actual CPU power (H Py) was introduced using Eq. 1.

HPijp = ———— (1)

A coefficient coe fjow_down Was also defined, which represents how much CPU
power (HPy,) from the database exceeds the actual one (Eq.2):

HPy
2

coefslow,down =

The intuition behind this coefficient is to measure how much work could be
performed if all CPU were busy all the time and if their powers were the same
as stated in the database (HPg). The actual power may be lower if the host
works with interruption. For instance, there is a parameter in the user settings
which defines the percentage of CPU time, and if the user’s processes exceed
this value, then the BOINC client will halt.

The configuration file was filled for the simulation, it was run and the com-
pleted work in FLOPs (T'Cj;,,,) was recorded. The coefficient in Eq. 3 also means
how much work could be accomplished if the client acted as in the simulation.

TC,;
coeftiops = TCSWZ (3)

Results are provided in Table 4.
Values for coe fsiow_down and coefyiops are close, what means (4):

I HP;, HPgy -ncpus-T f TCsim (4)
CO€ [slow_down = = X COE [flops = ;
! ¢ HPdf Tcreal flov TCreal

HPy -nepus - 7 = TCysim (5)

Equation 5 indicates that the simulation with one client produces the same
amount of work as if all cores operated all the time and demonstrated perfor-
mance equivalent to the CPU power specified in the configuration.

In conclusion, the simulation of a single host was verified. The correct work
of the simulator with periods of availability and unavailability, as well as simu-
lations involving multiple hosts, can be verified using timelines similar to those
from Sect. 5.1.

In addition, based on the experiment, it has been seen that the clients aren’t
fully utilized, even if they are dedicated solely to the project, what might be
caused by user settings. It can be investigated further.

What is more, the tasks in the simulation are of fixed size and they can be
generated in a larger amount compared to the dataset. The amount of work in
FLOPs is a more preferable metric for experiments in ComBoS.

132 K. Petrenko and I. Kurochkin

Table 4. coefsiow_down and coefriops calculated for chosen hosts

host|coe fsiow_down|simulation time|#tasks in real #tasks in simulation coeffiops
1 [1.243 20 2659 3797 1.138
2 1.694 18 8934 13298 1.497
3 2.084 37 1176 2426 1.909
4 |2.108 38 2215 5574 1.922
5]2.252 38 1282 2605 2.083
6 [2.267 37 2296 8578 2.057
7 2373 38 2608 6040 2.158
8 2435 38 4730 16436 2.230
9 2461 37 1333 4588 2.257
10 [2.541 38 2109 6105 2.306
11 |2.726 38 1442 3856 2.514
12 13.338 38 2249 9707 3.030
13]4.620 37 1798 8743 4.196
14 16.924 37 1450 11904 6.247
15 [8.016 37 1261 8214 7.178
16 |27.094 38 1037 5511 24.776

7 Conclusion

BOINC is a widely and actively used platform for volunteer computation that
contributes to science. The current paper provides an overview of the BOINC
system and the tools which models it for research and development purposes.
It also describes the experience with running one of the available simulators,
ComBoS, problems that were encountered and how they were solved. The paper
also includes the steps were made to validate the new version of the simulator.

Overall, the simulator has become more convenient to work with, many exper-
iments were run to find and fix bugs. It also was validated by drawing helpful
graphs, measuring metrics and comparing performance of hosts with the real
data.

Our version of ComBoS is available by [21].

Acknowledgments. This work was funded by Russian Science Foundation (No 22-
11-00317). We would also like to thank the RakeSearch team for providing the data.

Simulation of Volunteer Computing 133

References

1.

2.

10.

11.

12.
13.
14.
15.
16.

17.

18.

19.

Anderson, D.P.: BOINC: a platform for volunteer computing. J. Grid Comput.
18(1), 99-122 (2020)

Anderson, D.P., Fedak, G.: The computational and storage potential of volunteer
computing. In: Sixth IEEE International Symposium on Cluster Computing and
the Grid (CCGRID 2006), vol. 1, pp. 73-80. IEEE (2006)

Kondo, D., Javadi, B., Malecot, P., Cappello, F., Anderson, D.P.: Cost-benefit
analysis of cloud computing versus desktop grids. In: 2009 IEEE International
Symposium on Parallel & Distributed Processing, pp. 1-12. IEEE (2009)
McGregor, I.:. The relationship between simulation and emulation. In: Proceedings
of the Winter Simulation Conference, vol. 2, pp. 1683-1688. IEEE (2002)

Smaoui Feki, M., Nguyen, V.H., Garbey, M.: Parallel genetic algorithm imple-
mentation for BOINC. In: Parallel Computing: From Multicores and GPU’s to
Petascale, pp. 212-219. I0OS Press (2010)

Anderson, D.P., Korpela, E., Walton, R.: High-performance task distribution for
volunteer computing. In: First International Conference on e-Science and Grid
Computing (e-Science 2005), 8-p. IEEE (2005)

Casanova, H., Legrand, A., Quinson, M.: Simgrid: a generic framework for large-
scale distributed experiments. In: Tenth International Conference on Computer
Modeling and Simulation (uksim 2008), pp. 126-131. IEEE (2008)
Alonso-Monsalve, S., Garcia-Carballeira, F., Calderén, A.: ComBos: a complete
simulator of volunteer computing and desktop grids. Simul. Model. Pract. Theory
77, 197-211 (2017)

Donassolo, B., Casanova, H., Legrand, A., Velho, P.: Fast and scalable simulation
of volunteer computing systems using simgrid. In: Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing, pp. 605—
612 (2010)

Taufer, M., Kerstens, A., Estrada, T., Flores, D., Teller, P.J.: SimBA: a discrete
event simulator for performance prediction of volunteer computing projects. In:
21st International Workshop on Principles of Advanced and Distributed Simulation
(PADS 2007), pp. 189-197. IEEE (2007)

Estrada, T., Taufer, M., Reed, K., Anderson, D.P.: EmBOINC: an emulator for
performance analysis of BOINC projects. In: 2009 IEEE International Symposium
on Parallel & Distributed Processing, pp. 1-8. IEEE (2009)

Block diagram of ComBoS architecture. https://drive.google.com/file/d/
1AINDxQ6wiof9eOykej56 L1 AG8mgznK_Z /view?usp=sharing

Debugging tool Valgrind. https://valgrind.org/

BOINC project RakeSearch. https://rake.boincfast.ru/rakesearch/about.php
Vatutin, E., et al.: Diagonalization and canonization of latin squares. In: Russian
Supercomputing Days, pp. 48-61. Springer, Cham (2023)

Network examples in the SimGrid documentation. https://simgrid.org/doc/latest/
Platform_examples.html#network-topology-examples

Javadi, B., Kondo, D., Vincent, J.M., Anderson, D.P.: Discovering statistical mod-
els of availability in large distributed systems: an empirical study of seti@ home.
IEEE Trans. Parallel Distrib. Syst. 22(11), 1896-1903 (2011)

Description of the S4U interface in SimGrid. https://simgrid.org/doc/latest/app-
s4u.html#api-sdu-actor

Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scal-
able, and accurate simulation of distributed applications and platforms. J. Parallel
Distrib. Comput. 74(10), 2899-2917 (2014)

134

20.

21.

K. Petrenko and I. Kurochkin

Kurochkin, I., Kondrashov, N.: Comparison of various algorithms for scheduling
tasks in a desktop grid system using a ComBos simulator. In: High-Performance
Computing Systems and Technologies in Scientific Research, Automation of Con-
trol and Production: 10th International Conference, HPCST 2020, Barnaul, Russia,
15-16 May 2020, Revised Selected Papers 10. Springer (2020)

The code for the author’s version of ComBoS. https://github.com/Ksenia-C/
combos/tree/master

