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Abstract. Article aimed to the description of equivalent transforma-
tions that are allow to get at least one diagonal Latin square (DLS)
from all main classes of DLS included in main class of given Latin
square (LS) if they are exist. Detailed description of corresponding algo-
rithms for LS of odd and even orders is given. Estimations for time
and memory complexities are presented, algorithms are provided with
detailed examples. Description of the results of diagonalization and can-
onization is shown. They allow to get collections of orthogonal diago-
nal Latin squares in a more efficient way comparing with direct usage
of Euler-Paker method using volunteer distributed computing projects
Gerasim@Home and RakeSearch on BOINC platform. The possibility of
obtaining stronger upper and lower bounds for some numerical series in
OEIS connected with DLS using suggested transformations is shown.
Prospects for further application of these transformations using dis-
tributed software implementation of corresponding algorithms are out-
lined.

Keywords: Latin squares * Diagonal Latin squares - Orthogonal
diagonal Latin squares - Diagonalization - Canonization - Isomorphism
classes + OEIS + Gerasim@Home - RakeSearch - BOINC

1 Introduction

One of the widely known types of combinatorial objects is Latin squares (LS)
[8,9]. An LS A of order N is a square matrix of size N x N, the cells A[z,y], z,y =
0, N — 1 of which are filled with elements of some alphabet U of cardinality
|U| = N (for definiteness, U = {0,1,..., N — 1}) in such a way that the values

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
V. Voevodin et al. (Eds.): RuSCDays 2023, LNCS 14389, pp. 48-61, 2023.
https://doi.org/10.1007/978-3-031-49435-2_4



Diagonalization and Canonization of Latin Squares 49

are not duplicated in the rows and columns of the square (rows and columns are
different permutations of the elements of the alphabet U). For diagonal Latin
Squares (DLS), an additional requirement is added that prohibits duplication of
values on the main and secondary diagonals of the square (DLS diagonals are
transversals). A number of open mathematical problems are associated with LS
and DLS, such as the enumeration of squares of general and special form [3,12,
14,18,21], the search for squares with an extremal value of one of the numerical
characteristics (the number of transversals, intercalates, loops, orthogonal co-
squares, etc.) [4,7,13,19], the construction of spectra of numerical characteristics
[5], the search for analytical formulas for the corresponding numerical series, the
construction of combinatorial structures from LS/DLS on the set of a binary
orthogonality relation [20], etc.

When processing low-order squares (usually, N < 7), at the current level of
development of computer technology and telecommunications, it is permissible
to use the exhaustive (Brute Force) enumeration method to enumerate LS/DLS
of a given type in combination with a corresponding post-processor, for which
the computing resources of modern multi-core processors are sufficient. As the
dimension of the problem N increases, a “combinatorial explosion” is observed,
and the computational complexity of the corresponding algorithms drastically
increases, which forces us to use a number of features of the problem (for exam-
ple, partitioning into isomorphism classes [17]) and develop highly efficient soft-
ware implementations focused on execution on computing facilities with parallel
architectures (computing clusters, supercomputers, grids). From the point of
view of parallel programming, combinatorial tasks are weakly-coupled, which
allows splitting the original task into independent subtasks (work units, abbr.
WU) in accordance with the “bag-of-tasks” principle, followed by their launch on
the nodes of grid systems that have received a wide distribution in recent decades
due to the active development of the Internet (both in terms of availability and
throughput of the corresponding communication channels). The largest example
of grid systems today is the BOINC platform [2], which includes several dozen
projects from various fields of science, where millions of users (crunchers) par-
ticipate all over the globe, providing free computing resources of their desktop
computers and mobile devices.

In this paper, we address the implementation features of the LS diagonal-
ization and canonization transformations, which work in conjunction with a
number of other LS/DLS enumeration and post-processing algorithms, which
made it possible to obtain a number of new numerical estimates for the numer-
ical characteristics of the DLS. The corresponding calculations were performed
using a computation module oriented to execution under BOINC within the
framework of the volunteer distributed computing projects Gerasim@Home! and
RakeSearch?.

! http://gerasim.boinc.ru.
2 https://rake.boincfast.ru/rakesearch.



50 E. Vatutin et al.

2 Basic Concepts and Definitions

In order to preserve the rigor of the presentation of the further material of
the paper, it is necessary to introduce a number of concepts and definitions.
An intercalate in a LS is a LS of order 2 x 2 standing at the intersection of
a certain pair of rows and columns. A transversal T; in a LS is a set of IV
cells in which all row numbers, all column numbers and all values are different.
The set of transversals of a LS will be denoted as T. A diagonal transversal
in a DLS is a transversal in which there is one element from both main and
secondary diagonals (these elements can coincide in the central cell for a DLS
of odd order). The canonical form (CF) of a DLS is [16] the lexicographically
minimal string representation of the DLS within the corresponding main class
of the DLS. A pair of LS/DLS A and B is called orthogonal (abbr. OLS/ODLS)
if all ordered pairs of values (A[z,y], B[z,y]), z,y = 0, N — 1 in its composition
are unique.

The number of transversals, intercalates, ODLSs and other objects in a given
square is one of the numerical characteristics that have a minimum and maxi-
mum value, as well as the corresponding set (spectrum) of possible values. Inte-
ger numerical sequences obtained for the selected numerical characteristic with
increasing problem dimension N are of fundamental importance and are col-
lected within the framework of the corresponding Online Encyclopedia of Integer
Sequences (OEIS) [15].

3 Embedding of LS and DLS Isomorphism Classes

For a LS, it is permissible to use equivalent transformations of isotopy which
include permutation of rows, columns, and renumbering of elements. These trans-
formations make it possible to set an equivalence relation on the set of LSs and
divide them into equivalence classes called isotopic ones. The cardinality of the
isotopy classes does not exceed (N!)3. Each isotopy class can contain several
DLS isomorphism classes (main classes of DLS). The main classes of DLS, in
turn, can be divided into subclasses, however, in the context of this paper, this
issue is of no interest and is not considered. The purpose of the diagonalization
transformation considered in the paper is to obtain at least one DLS from each
of the main DLS classes for a given initial LS. In order to avoid duplication, DLS
obtained during diagonalization are transferred to CF (being canonized), which
are subsequently collected.

One of 6 parastrophic transformations can be applied to the squares in the
LS isotopy class, as a result of which 6 parastrophic slices (isotopy classes) will
be obtained, which together form the main class of LS (not to be confused with
the main class of DLS considered above). If a LS has generalized symmetries
(automorphisms), some parastrophic slices, then LS in the isotopy classes and/or
main classes of the DLS may coincide.

Schematically, the hierarchy of isomorphism classes of LS and DLS is shown
in Fig. 1.
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LS main class

LS isotopy class 1 LS isotopy class 2 LS isotopy class 6
(parastrophic slice 1) (parastrophic slice 2) (parastrophic slice 6)

DLS main class 1.1 DLS main class 2.1 DLS main class 6.1
DLS main class 1.2 DLS mainclass 2.2 >| DLS main class 6.2

DLS main class 1.k DLS main class 2.m DLS main class 6.n

Fig. 1. Hierarchy of isomorphism classes of LS and DLS.

Remark. The depiction of the nested hierarchy of isomorphism classes shown
in Fig. 1 is simplified: one main class of DLS can be nested in several paratopy
classes of LS, since in the paratopy classes of LS it is not allowed to use rotations
or transpositions of the square, unlike the main classes of DLS.

The isomorphism classes considered above are characterized by the presence
of various invariants. For example, the invariants of the main class of LS are the
number of intercalates, the number of transversals, and the number of OLS, while
the invariant of the main class of DLS is the number of diagonal transversals and
the number of ODLS. The lexicographically minimal CF of the DLS obtained
as a result of the canonization of a given LS, if it exists, is a complete invariant
of the main class of LS.

4 Diagonalization and Canonization of Latin Squares

Under the diagonalization of a LS we mean the procedure of targeted permuta-
tion of rows and columns aimed at obtaining at least one correct DLS from each
main class of DLS in the composition of the corresponding isotopy class of LS.
The algorithm for performing all possible combinations of permutations of rows
and columns has an asymptotic time complexity of the order ¢ ~ O((N!)?) and
is not applicable for practically important orders of the LS. The diagonalization
procedure considered in this paper, as will be shown below, has polynomial time
asymptotics both on the order of the square N and on the number of transversals
[T
A schematic description of the diagonalization procedure is given below.

1. Find a pair of transversals T; and T symmetrically placed by Brown [6] in
the given LS A.

2. By the targeted permutation of the rows and columns in LS A, set transversal
T; to the main diagonal to obtain LS A’. Transversal T; in LS A will be
transformed into a transversal 7} in LS A’.
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3. By the targeted permutation of the rows and columns in LS A’, set transversal
T} to the secondary diagonal, leaving transversal 7; on the main diagonal,
obtaining the resulting DLS A”.

An example schematically explaining the process of setting transversal T; to
the main diagonal is shown in Fig. 2.

b)

a) .
d) e)
¥ w4 ¥ %
]
Bl 18l ] [Csl
9) N

18l

Fig. 2. Setting the transversal T; of LS A (the elements are indicated by the symbol
“x”) to the main diagonal by the targeted permutation of the columns to obtain the
LS A'.

After setting transversal T; to the main diagonal, the elements of transver-
sal T; are located symmetrically with respect to it (see Fig.2g). An example
schematically explaining the process of setting transversal T to a secondary
diagonal is shown in Fig. 3.

Let us consider the algorithms of the corresponding transformations in more
detail. We will say that a cell of LS with coordinates [z, y] belongs to the transver-
sal Ty, € T if Ty [z] = y (the transversal is a one-dimensional array (permutation)
in terms of programming languages, see the example in Fig. 4).

The condition that the transversals T; and T} are placed symmetrically by
Brown can be formulated as follows: for each row x; of the LS containing the
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d)

[ 1] E

Fig. 3. Setting the transversal T} of LS A’ (the elements are indicated by the symbol
“0”) to the secondary diagonal by the targeted permutation of the rows and columns
to obtain the DLS A”.

elements [z1, T;[z1]] = [z1,31] and [z1, Tj[z1]] = [z1,y2] of the considered pair
of transversals, there is a row xs such that it will contain the elements of the
transversals [z, T;[z2]] = [z2,31] and [x2, Tj[zs]] = |22, y2]. Moreover, T;[z] =
Tj [xg] =11 and Tj [xl] = TZ[LL‘Q] = Y2.

In other words, the elements [z1,T;[x1]], [z1,Tj[x1]], [x2,Tj[z2]] and

[x2, Ti[z2]] form a rectangle in the LS (see Fig. 5).

The algorithm for checking a pair of transversals for symmetry by Brown is
reduced to searching for a row xo that satisfies the above condition for a given
row x; among all rows not yet considered and is presented below.

1. Let the set of considered rows S := @; the number of the first row z; := 0.

2. If the current first row has already been considered before (z; € S), go to
step 6.

3. Find row x5 that satisfies the Brown symmetry condition considered above
in a pair with row .

4. If row x5 was not found, then return the result “the pair of transversals is
not symmetric by Brown” (r := 0); go to step 9.

5. Mark rows x1 and x2 as considered S := S| J{z1,x2}.

Consider next row: x7 = x1 + 1.

7. If 1 < N, go to step 2.

>
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Fig. 4. An example of a DLS of order 5 and a transversal T = [1,0, 2,4, 3].

Column y,
Column y,

[x. T, [x]]

\ /

Row x4

ALY

[x2.7; =]
~

Row x; E. .............

Fig. 5. An illustration explaining the condition for the symmetry of a pair of transver-
sals by Brown (a pair of transversals, denoted by the symbols “x” and “0”, is taken
from the example considered above, see Figs.2 and 3).

8. Return the result “the pair of transversals is symmetric by Brown” (r := 1).
9. End of the algorithm.

When implemented explicitly, the algorithm requires viewing % rows xp of
the LS, for each of which a search is made for the corresponding row x (step 3),
performed in linear time, which leads to time asymptotic complexity ¢ ~ O(N?).
From the above condition Tj[zs] = y1, it follows that zo = Tfl[yl] = Tfl[Ti [1]]
(another option is wy = T; *[ya] = T; '[T}[x1]] as a consequence of Tj[x] = y1),
where T} ! is the permutation inverse to T}, which allows finding the row number
22 in time independent of N, and reduces the time complexity of the algorithm
to t ~ O(N), and the algorithm itself can be reduced to checking one of the
conditions T;[T; *[T}[z1]]] = v1 = Ti[z1] or T,[Tj‘l[TZ[xl]]] = yo = T)j[z] for all
row numbers z; = 0, N — 1.

It is easy to see that when working with a LS of an even order, transversals
placed symmetrically by Brown should not intersect due to the fact that the
main and secondary diagonals also do not intersect, for a LS of an odd order
there must be exactly one intersection point, which will subsequently be set to
the center of the square.
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Let us consider the algorithms for setting transversals placed symmetri-
cally by Brown to the diagonal using the example of a LS of even order. As
noted above, first it is necessary to set the transversal 7; to the main diag-
onal to obtain LS A’ from the LS A, for which the following formula is used:
A'[l k] := A[l, T;[k]], I, k = 0, N — 1. The asymptotic time complexity of the algo-
rithm is ¢ ~ O(N?). Next, one needs to set the transversal T} to the secondary
diagonal, keeping the main diagonal (the elements of the main diagonal can be
interchanged). After setting the transversal T; to the main diagonal, the elements
of the transversal T; changed their position in the LS A’: T;[k] — T, '[T;[k]],
and the values stored in them equal v[k] = A’[k, T; ' [T;[k]]]. The algorithm for
the targeted permutation of rows and columns of LS A’ in order to obtain DLS
A" is given below.

Let the number of the current row & := 0.

Find column ! which contains the value v[k] in the k-th row.
Swap columns [ and N —1 — k.

Swap rows [ and N — 1 — k.

Swap the values v[k] and v[IN — 1 — k] in the array of values v.
k:=k+1.If Kk < N, go to step 2.

End of the algorithm.

N otE W

The algorithm sequentially processes N rows, for each of them a unary search
for a suitable column is performed in linear time, therefore, the algorithm as a
whole has asymptotic time complexity ¢ ~ O(N?).

The processing of an odd-order LS differs in that a pair of transversals placed
symmetrically by Brown must have exactly one intersection [Z,7], the corre-
sponding element must be set to the center of the square by rearranging rows
with numbers # and |% | and columns with numbers § and |5 |, where |z] is
the operation of rounding down (truncation), (|4 |, |4 ]) is the central cell of
the square, and then set transversals T; and T} to both the main and secondary
diagonals in the same way as discussed above.

The transversals are checked for symmetry by Brown for W pairs
of transversals (upper or lower triangular submatrix with the corresponding
graphic representation of the correspondence of transversals to the symmetry
condition). Respectively, the asymptotic time complexity of the LS diagonaliza-
tion algorithm is ¢ ~ O(TUTIZL (k) N 4 by N2 4 k3 N?)) ~ O(|T[2N?), where
ki1, ko, k3 are some coefficients. In the algorithms considered above we use, as
additional data structures, the mark of already considered rows and information
about one of the inverse transversals 7}~ L respectively, the space complexity of
the algorithm is m ~ O(N). At the same time, as initial data, the algorithm
operates with the initial LS A (m ~ O(N?)) and the set of its transversals
(m ~ O(|T|N)).

By canonization of a LS we mean the procedure of applying parastrophic
transformations to a given LS with subsequent diagonalization of the obtained
LS and, as a result, obtaining a CF of the DLS for each of the main classes
of the DLS in the main class of the LS. In this case, we can restrict ourselves
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to using only 3 parastrophic transformations out of 6, since transposition is an
equivalent transformation for the main classes of DLS and does not lead to new
main classes of DLS. An example of a LS and the result of its canonization to
obtain a DLS is shown in Fig. 6.

DLSCF2 DLSCF3 DLSCF4

Fig. 6. An example of the original LS A and the results of its canonization (up to
normalization and combinations of M-transformations): in total, LS A is diagonalized
to 347 main classes of DLS, the CF of five of which are shown in the figure.

5 Practical Application of Canonization
and Diagonalization

The canonization procedure can be effectively used in a random search for CF
of ODLS, when from a given initial random LS, the CF is constructed from all
the main classes of the DLS that are part of the corresponding main class of
the LS, and then they are checked for the presence of orthogonal co-squares.
The advantage in this case lies in the fact that the construction of the set of
transversals is performed only once for the original LS, the sets of transversals
for the DLS as part of the corresponding main classes of the DLS can be obtained
from it by applying a combination of equivalent transformations (parastrophic
transformations, permutations of rows and columns), which is essentially faster
than building a set of transversals for each DLS separately. When constructing
a list of CF of ODLS of order 10, the use of an appropriate canonizer (the
application was developed by A.D. Belyshev and optimized by A.M. Albertyan
[1]) makes it possible to increase the effective rate of processed DLS several-fold
(see Fig. 7).

When constructing exhaustive lists of CF of ODLS for any order N (at
present, the construction of the corresponding lists has been made for dimensions
N <9), the use of the canonizer does not make sense, because in this case, the



Diagonalization and Canonization of Latin Squares 57

initial DLS are formed by exhaustive enumeration, and the gain in the processing
rate observed for random DLS will be more than compensated for by the loss
either in reprocessing or filtering out of DLS that have already been processed
earlier as part of the corresponding main classes of LS. In this case, the use
of the classical Euler-Parker method in combination with the dancing links X
algorithm (DLX) [10,11] is preferable.

For a number of LS orders, the squares with a record number of transversals
are known (see the numerical sequence A090741 in OEIS?) [13]. By diagonalizing
them, one can obtain DLS with interesting properties (for example, the maxi-
mum known number of transversals, diagonal transversals, or ODLS). Thus, a
DLS with a record number of diagonal transversals for orders N € {10,12, 15}
and a DLS with a record number of transversals for orders N € {12,15} were
obtained, see Tables1 and 2.

20 000 000
19 000 000
18 000 000
17 000 000
16 000 000
15000 000
14000 000
13000 000
12000 000
11000 000
10 000 000
9000000

8000000

7000 000

6000 000

5000000

4000000

3000000

2000000

1000 000

0

0 500 1000 1500 2000

Fig.7. The dynamics of filling the list of CF of ODLS of order 10 according
to the results of calculations in the projects of volunteer distributed computing
Gerasim@Home and RakeSearch: days are plotted along the X-axis, the number of
CF of ODLS are along the Y-axis, the arrow marks the moment of transition from
using the classical Euler-Parker method [10,11] to the canonizer.

In addition, DLS obtained as a result of diagonalization of similar LS of one of
the special types (cyclic, Brown DLS, etc., depending on the order of the DLS N)
[8], as a rule, form the upper part of the spectra of the corresponding numerical
characteristics which seems impossible to be obtained by other methods (see
example in Fig. 8).

Diagonalization of cyclic LS of order 11 yielded a number of rare combina-
torial structures of ODLS of order 11, not obtained by other methods, and the
highest part of the spectra of the number of diagonal transversals in DLS and
ODLS of order 11 (Fig.9).

In combination with heuristic methods for approximating the spectra S of
the numerical characteristics of the DLS, based on bypassing the neighborhoods

3 https://oeis.org/A090741.
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Fig. 8. Examples of spectra of the number of diagonal transversals in the DLS of order
12, obtained by diagonalizing the DLS with 198144, 132096 and 122880 transversals,
respectively (a-c) and approximating the spectrum as a whole (d).

of the DLS, the use of diagonalization makes it possible both to increase the
cardinality |S| of the corresponding spectra and to strengthen the known upper
restrictions on the lower boundary of the spectrum inf .S from 43979 to 43093,
which cannot be done by other methods.

Fig.9. Approximation of the spectrum of the number of diagonal transversals in a
DLS of order 11 (the part of the spectrum obtained by diagonalizing cyclic LS is
highlighted).

6 Conclusion

For DLS of order 12 with a large number of transversals and for the vast major-
ity of DLS of order 13 and higher, a single-threaded software implementation
of the diagonalization procedure takes tens of hours at best, which is why its
parallel distributed software implementation was developed. Currently, with its
use in one of the subprojects of the RakeSearch volunteer distributed comput-
ing project, the spectrum of the number of diagonal transversals in the DLS
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is being expanded to about 13. At the moment, |S| = 12926, inf S = 4756,
sup S = 131 106; about half of the experiment has been completed, the expected
time of the computational experiment is about 2 months. In the perspective of
further research, we plan to use diagonalization together with methods based on
bypassing the DLS neighborhoods to expand the spectra of numerical charac-
teristics of DLS of orders N > 14.

Table 1. DLS of order N with the maximum number of diagonal transversals obtained
using diagonalization (integer sequence A287648 in OEIS (https://oeis.org/A287648.)).

N DLS Value of t.hc. numerical Method
characteristic

0123456789
1234095678
3498271056
6501728943
10 9876543210 890 Extending the spectrum of the
4082367195 number of diagonal transversals
8765904321 by going around neighborhoods in
5917632804 combination with diagonalization
7659810432
2340189567
01 2 3 4 5 6 7 8 9 1011
1 2 3 4 9 8 11 5 10 0 6 7
5 8 10 6 11 4 1 3 9 7 0 2
11 7 5 8 102 9 1 3 6 4 0
7 5 8106 3 0 2 411 9 1
12 9 01 23 T I0 15 4 86 30192 Diagonalization of the LS obtained
61 7 5 8 1 4 0 2103 9 by the composite squares method
06 17 5 03 9 1 8 2 4
34 9 0 1 6 5 1011 2 7 8
2 3 4 9 0107 8 6 1 11 5
4 9 0 1 211 8 6 7 3 5 10
8§ 10 6 11 7 9 2 4 0 5 3
01 2 3 4 5 6 7 8 9 1011 12 13 14
12 0 4 5 3 7 13 9 1411 1210 6 8
1011 1213 6 7 1 2 4 5 9 14 8 0 3
136 7148 9 4 5 1210 0 1 3 11
5 3 410111214 8 1 2 7 13 6 9 0
121011 7 136 0 1 3 4 8 9 14 2 5
3 4 5 1112108 9 2 0 13 6 7 14 1
15 6 7 13 8 9 14 5 3 1011 1 2 0 4 12 4620434 Partial diagonalization of cyclic LS
148 9 1 2 0 1210 7 13 3 4 5 11 6
4 5 3121011 9 14 0 1 6 7 13 8 2
8 9 14 2 0 1 101113 6 4 5 3 12 7
2 01 5 3 413 6 14 8 121011 7 9
11210 6 7 13 2 0 5 3 14 8 9 1 4
13 9 14 8 3 4 1112 2 0 1 5 10
9 148 0 1 2 1112 6 7 5 3 4 10 13
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Table 2. DLS of order N with the maximum number of transversals obtained using
diagonalization (integer sequence A287644 in OEIS (https://oeis.org/A287644.)).

Value of the numerical

N DLS Method
characteristic
01 2 3 4 5 6 7 8 9 10 11
12 345011678 910
9 8 7 6 11101 0 5 4 3 2
4 5 0 1 2 3 8 9 1011 6 7
611109 8 7 4 3 2 1 0 5
12 1109 8 7 65 4 3 210 198 144 Diagonalization of the LS obtained
3450129101678 by the composite squares method
2 3 4 5 0 1101 6 7 8 9
109 8 7 6 11 0 5 4 3 2 1
501 23 478 91011 6
7611109 8 3 2 1 05 4
8 7 6 1110 9 2 1 0 5 4 3
01 2 3 4 5 6 7 8 9 1011 12 13 14
1 2 0 4 5 3 7 13 9 14 11 12 10 6 8
1011 1213 6 7 1 2 4 5 9 14 8 0 3
136 7 14 8 9 4 5 1210 0 1 2 3 11
5 3 4 10111214 8 1 2 7 136 9 0
121011 7 13 6 0 1 3 4 8 9 14 2 5
3 4 5111210 8 9 2 0 13 6 7 14 1
15 6 7 138 914 5 3 1011 1 2 0 4 12 36362925 Diagonalization of cyclic LS
48 9 1 2 0 1210 7 13 3 4 5 11 6
4 5 3121011 9 14 0 1 6 7 13 8 2
8 9142 0 1 101113 6 4 5 3 12 7
2 0 1 5 3 13 6 14 8 12 10 11 7 9
111210 6 7 13 2 0 5 3 14 8 9 1 4
136 9 14 8 3 4 1112 2 0 1 5 10
9 14 8 0 1 2 1112 6 7 5 3 4 10 13
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