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Abstract. The paper addresses the problem of accelerating the “tail”
stage of a computational experiment in a Desktop Grid. We provide the
mathematical model of a “tail” stage, describe the setting of simulation
experiments and provide their results. Task replication in “tail” phase
proves to be efficient in decreasing the duration of “tail” by orders of
magnitude.
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1 Introduction

Desktop Grid is a high-throughput computing paradigm which is based on use of
idle time of non-dedicated geographically distributed general purpose computing
nodes (usually, personal computers) connected over the Internet or by a local
access network.

Desktop Grids are an important part of a high-performance computing do-
main; this concept is used in volunteer computing projects to perform large-scale
scientific computations. The most powerful volunteer computing project Fold-
ing@home gathers resources exceeding 2 ExaFLOPS3.

BOINC is an Open Source software platform for Desktop Grid deployment;
it is a de-facto standard for volunteer computing. BOINC has a client-server ar-
chitecture; the server consists of a number of parallel services sharing a database
(see [1] for detailed architecture). A client software connects to the server to
request tasks, then performs computations and returns the results. The server
checks correctness and validates the results, then aggregates them to obtain the
solution of the initial problem.

One of the important issues and significant difficulties of a Desktop Grid
project implementation is unreliability of clients. A computing node can leave
the project after receiving tasks without notification of the server. This leads to
losing the tasks. To cope with unreliability, deadline and replication mechanisms
are used. Deadline is the expiration date of a task. If the node has not returned

3 https://stats.foldingathome.org/os

Submitted to the International Conference Russian Supercomputing Days 2020,
RSD-2020, https://russianscdays.org/ , in 2020

1



the result before this date, the task comes as lost and is requeued (and to be
resent to another node) by the server.

Replication is the form of redundant computing; each task is replicated with a
certain factor to be sent to several nodes. The results of computations by several
nodes are compared to guarantee the correctness. In addition to correctness,
replication is also used to speed up the results of certain tasks receiving having
in mind unreliability of computing nodes.

Unreliability is a significant problem at the final stage of a computational
experiment, when the number of tasks is less than the number of computing
nodes. Then, because of multiple possible deadline violations and requeueing the
tasks, the obtaining of the results could be significantly unnecessarily extended.
Use of replication at the final stage of an experiment allows to significantly
accelerate the experiment. But it is in question what a replication strategy should
be used. In this paper we propose a mathematical model of the final stage of an
experiment, describe four possible strategies and provide the results of numerical
experiments demonstrating replication efficiency.

The structure of the paper is the following. Section 2 presents motivation and
related works. In section 3, we describe the mathematical model of the final stage
of an experiment. Section 4 gives numerical experiments overview and results.
Finally, in section 5, we give the concluding remarks and discuss the results.

2 Motivation and Related Work

The standard computing process of BOINC does not involve dealing with unre-
liable computing nodes (the ones that never completed the computation of the
received tasks and left the Desktop Grid). Instead, the concept of a deadline
for computations is used, in case of violation of which the task is considered
lost and re-queued for computations. This approach works well in most cases
— when one needs to perform an infinite (or very large) number of tasks, mu-
tually independent, of equal value from the point of view of a computational
experiment.

However, there are also smaller-scale problems (solved, for example, within
the framework of “umbrella” projects or in the Enterprise Desktop Grid), con-
sisting of a sequence of dependent or independent computational experiments,
where the results of each individual experiment can be evaluated only when all
its tasks are completed. For such problems, the presence of unreliable compu-
tational nodes significantly affects the duration of a computational experiment.
As the researchers note, the length of the “tail” of the experiment can be sev-
eral times longer than the final computation period of an individual task (see,
for example, [2], [3]). This is due to the fact that the “tail” of the computa-
tions accumulates unreliable nodes and the nodes that have left the Desktop
Grid. Therefore, in practice, it is important to develop methods for reducing
this stage of computations.

Replication is the basic method of reducing the “tail” of computations. Be-
ing a form of redundant computing, this mechanism serves several purposes.
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Firstly, replication can increase the likelihood of obtaining the correct result in
time, even if some nodes become unavailable without completing the computa-
tions; secondly, this mechanism allows to increase the efficiency of the system in
terms of throughput of correct results. However, redundant computing signifi-
cantly reduces the available processing power of the Desktop Grid. Therefore, the
replication coefficient (the number of copies of a task simultaneously processed
on computing nodes) should be as low as possible. The question of finding opti-
mal replication parameters is studied, for example, in [4]: on the basis of a fairly
simple mathematical model, the author determines the most suitable parameter
values using the work history of the NetMax@home project.

In one of the pioneering works on Desktop Grids [2] (the paper uses the term
SNOW — a shared network of workstations), the effect of replication on the
speed of task execution is studied. The task is considered completed if it was
not interrupted by the owner of the workstation for a certain period of time. If
the task is interrupted, it starts firstly on the same or another workstation. Two
types of applications are considered: strongly connected (interrupting any task
requires a restart of all application tasks) and weakly connected (interrupting
a task requires restarting only this task and does not affect the rest). From a
mathematical point of view, the joint distribution of N independent identically
distributed random variables is analyzed. In this setting, the authors prove that
to speed up the application, it is better to make one replica for k tasks than k
replicas of a single task. It is also shown that an additional workstation is better
be used to replicate a task that has the least number of replicas. In addition, the
paper presents an analysis of the trade-off between increased concurrency and
replication. It has been shown that in a number of cases, for strongly related
tasks, replication is more preferable than parallelization.

A large number of research articles have been devoted to solving the problem
of reducing the “tail” of computations. In [3], the following methods for solving
this problem are noted:

– redundant computations (replication): several copies of the same task are
transferred to different nodes with the expectation that at least one of them
will solve it in time;

– scheduling based on reliability and availability assessment: when assigning
tasks, preference is given to reliable computing nodes with high availability;

– re-submission: problem tasks are detected and transferred to other nodes for
computation.

In [5], the author considers two, previously known, solutions to the problem
of reducing the “tail” of computations proposed for the GridBot:

– aggressive replication: replication of tasks in excess of the necessary quorum
in case of inactive or too slow computing nodes. However, such an approach,
as the author points out, leads to significant losses in computing power and
processor time due to redundancy of computations;

– node selection: the use of slow or weakly active computing nodes in the “tail”
of computations is inefficient from the point of view of computation time,
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therefore, when processing the latest tasks, one needs to select nodes with
good characteristics, ideally powerful and continuously available ones.

Along with the two indicated methods, the author of the work offers a new
strategy (called “dynamic slack”) related to the dynamic setting of the deadline
for a task. When transferring the task to the node, the server sets the compu-
tation period depending on the completeness of the entire computational exper-
iment and the capacity of the node. At the final stage, a shorter computation
period is set, which allows previously inactive nodes to be detected. In this case,
it is necessary to maintain a balance, because too short deadline will not allow
a reliable node to complete the task in time and will lead to the loss of both
computing power and time.

To evaluate the effectiveness of the methods considered in the work, the au-
thor conducted a series of experiments. To perform the experiments, the SimGrid
simulator was used, in which data on the availability of 100 computing nodes of
the SETI@home project were downloaded; three sets of experiments were carried
out using various combined strategies for calculating the “tail”:

– default strategy without any speedup methods;
– dynamic deadline and node selection;
– dynamic deadline, node selection and aggressive replication.

The results of the experiments showed that the use of a dynamic deadline and
selection of a node can significantly reduce the time for calculating the “tail” of
a computational experiment, while aggressive replication, on the contrary, leads
to a loss of productivity and a delay in computations.

The work [6] addresses the problem of “tail” computation for distributed
data processing systems of the MapReduce/Hadoop type. The main difference
of such systems from the Desktop Grid in the considered formulation is the
ability to remotely interrupt the computation of the task on the node (while, as
in the case of Desktop Grid, there is no information about the current state of
computations). Also, the work does not limit the number of available nodes, but
all replicas start at the same time. It is noted that the following three questions
are of interest:

1. What should be the fraction of incomplete tasks for the start of replication?
2. Which number of replicas for each incomplete task to launch?
3. When replicating, whether to cancel the initial incomplete task or not?

The paper considers a strategy with one replication start point in two ver-
sions:

– saving the original copy of the incomplete task upon replication;
– aborting the original copy of the incomplete task upon replication.

The main attention is paid to the analysis of the relationship between the
completion time of a set of tasks and the expected amount of computations.
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Let r be the number of additional replicas of a task. The completion time is
determined as follows:

E[T ] = E[ max
i∈{1,2,...,n}

Ti],

where Ti = min
0≤j≤r

(τ + Xij) is the minimal time of completion of either one of

the replicas or the initial, ith, task (if it was not aborted), τ = 0 for the initial
task (if it was not aborted) or the replication moment. Xij is a random variable
from the distribution function of task runtime on the node.

Expected amount of computations is determined as follows:

C =
1

n

n∑
i=1

r∑
j=0

(Ti − tij) ,

where n is the number of incomplete tasks.
The author notes that the relationship between the completion time of a set

of tasks and the expected amount of computation (cost) depends on two key
characteristics of the distribution function of task service time on a node: 1)
whether the distribution tail is heavy, light or exponential, and 2) whether the
distribution belongs to the type “new faster than old” or “new slower than old”.

The authors of work [7], in addition to prioritizing resources and excessive
replication, also propose two strategies for excluding nodes from the computation
process: based on a simple performance threshold (for example, excluding all
nodes with a clock rate less than a given one) and based on a forecast of task
completion time (exclusion of nodes that would not complete the task in time
if it was assigned to them). In this way, the risk of violating the deadline for
computations and delaying computations is reduced. The authors experimentally
test the proposed strategies.

From the point of view of resource prioritization, the use of only static in-
formation about the clock rate has led to improved application performance,
despite the large number of factors affecting the operation of the computing
node. This is partly due to the fact that the clock rate correlates with several
performance indicators, such as the frequency and time of tasks completion. At
the same time, the use of more dynamic information, such as statistics on the
availability of a computing node, does not bring the expected benefits due to its
weak predictability (complex periodicity, changes in the behavior of the node,
etc.). The performance prioritization benefits can be significantly limited when
the queue reaches nodes with a relatively low clock speed. Therefore, authors use
resource exclusion so that these slow nodes do not delay application execution.

The use of a fixed threshold for clock rate to exclude weak computing nodes
has proven itself well in systems with a large dispersion of clock rates. However,
in systems with a relatively small dispersion, the exclusion of resources often
affected the computational nodes which could be useful in solving the problem.
As an alternative to the resource exclusion strategy based on the clock rate, a
resource exclusion heuristic was proposed based on the forecasting of the working
period, which proved to be better in experiments.
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In their work, the authors also explore replication strategies: proactive, reac-
tive, and hybrid ones. Proactive replication aims to replicate all tasks; reactive
one — to replicate those tasks whose computation time exceeded the predicted
one; finally, the hybrid strategy aims to replicate those tasks for which there is
a high probability of exceeding the predicted completion time. The authors use
a rather simple prediction of completion time as a ratio of the complexity of the
task to the performance of the computing node (the complexity of the task is
considered known, and the availability of the node is not taken into account).

The result of the work was the development of a scheduler for the Desktop
Grid XtremWeb combining clock prioritization, adaptive exclusion of resources
to predict task completion time and reactive replication. The experiments con-
ducted by the authors showed a significant superiority of the developed scheduler
over the standard First-Come-First-Served scheduler used in the Desktop Grid.

In this paper we use the same approach as described in [8,9]. We present
the more general mathematical model, introduce four heuristic strategies and
provide a numerical analysis.

Based on the analysis of research works, we can conclude that the use of
intuitive heuristics allows one to get a significant advantage in time compared
to the computations without replication. However, a stable time benefit with
low redundancy of computations is possible only if the characteristics of com-
puting nodes are taken into account. The main characteristics of the nodes are
availability and reliability, defined in this case as follows:
– reliability is the ability of a computational node to finish the task before the

given time moment (deadline);
– availability is the proportion of time periods when the node computes the

tasks and the ones when it does not.

The indicated parameters can be expressed by numerical characteristics (see,
for example, [10,11]) or, more adequately, with the corresponding statistics — in
the form of empirical distribution functions of the task completion time.

Depending on the interrelation of parameters, the following heuristic strate-
gies are possible:
– Strategy 1 for available and reliable nodes: the nodes will compute the tasks

in due time, and quickly, therefore, it is necessary to replicate the tasks for
which it is possible to reduce the computation time (one by one, starting
from expectedly the longest to compute).

– Strategy 2 for available but unreliable nodes: the longer the task has been
computing, the more is the probability that the node exited the Desktop
Grid, so it is necessary to replicate the longest running tasks.

– Strategy 3 for unavailable but reliable nodes: the longer the task has been
computing, the more is the probability that the task will finish soon, there-
fore, it is necessary to replicate the “earliest” tasks.

– Strategy 4 for unavailable and unreliable nodes: a node may fail to finish
the task with high probability, so it is necessary to replicate the tasks with
the highest probability to miss a deadline.

Next, we consider the mathematical models of the listed strategies.
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3 Mathematical Models of the Experiment Completion

Let us consider Desktop Grid at the moment t0, when a system consists of n
nodes, there is no queue, n − 1 nodes are computing, and one of the nodes
(released or new) requests a task from the server.

We will assume that the computation time of any task is random, indepen-
dently and equally distributed. Equal distribution means that the distribution
function of the task completion time on each node is the same for all tasks (all
tasks have the same computational complexity). Independence means that the
time for obtaining the result does not depend on the time at which the compu-
tations were performed, and the same task is not assigned to the same node.

Suppose that for each node, we know the distribution function of time to
complete the computations

Fi(x) = Fi,X(x) = P (X ≤ x), i = 1, . . . , n.

Then at the moment of time t0, the expected time to complete the experiment
(i.e. finish all the tasks present in the system) is defined as

Texp = max
i=1,...,n−1

ETi(t0).

Formally, ETi(t0) is written as follows:

ETi(t0) =

di∫
t0

xdFi(x|t0) + F i(di|t0)G(di, t0). (1)

Here,

– Fi(di|t0) is the distribution function of time to complete the computations
upon condition that they have not finished at the moment t0.

– F i(di|t0) = 1− Fi(di|t0) is, at the moment t0, the probability of the node i
to miss a deadline.

– di is the due date of computations on the node i (the earlier started the
current task, the less)

– G(di, t0) is, calculated at the moment t0, expected at the moment di time
to recompute the task again after missing a deadline.

Note that Texp, Ti(t0), t0 and di are completely different time instances. In its
turn, the expected time for recomputing the task again after missing a deadline
G(di, t0) consists of the waiting time for the release of the node and the average
computation time in case of either completion of the computations in time or
the new expected time of recomputing the task again after missing a deadline:

G(di, t0) =W (di, t0) +

d∫
0

xdFa(x) + F a(d) (d+G (t0 + di +W (di, t0) + d)) .

(2)
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Here, the expected time of releasing the node is

W (di, t0) = max

di, min
j=1,...,n;j 6=i

dj∫
t0

xdFj(x)

 , (3)

the index of the completing node is

a = arg min
j=1,...,n;j 6=i

dj∫
t0

xdFj(x) (4)

It should be noted that this formula does not take into account the possibility
of a new node appearing in the Desktop Grid, as well as the fact that the released
node may be busy computing another task for which the deadline has been
missed. Furthermore, the calculation of the completion time does not take into
account overhead costs, such as the time between the end of the computation
and the beginning of the computation of a new task.

Employment in the formulas (1),(2), (3), and (4) of several expected values of
various random variables, as well as the above assumptions, lead to the fact that
the calculated value of the task completion time on the node i (according to the
formula (1)) will significantly differ from the real one. In addition, calculations
by the above formulas are quite resource intensive. Therefore, from a practical
point of view, it makes sense to move to the averaged values in the formulas (2)
and (3). Then

G(di) = (di − t0) +W ′ +

d∫
0

xdF (x) + F (d)G′, (5)

where

G′ = d+W ′ + F (d)G′ =

d+W ′ +
d∫
0

xdF (x)

F (d)
(6)

and W ′ = 1
2

d∫
0

xdF (x).

4 Experimental Results

The experiments were performed on a Desktop Grid simulator program. The
simulator is aimed at research of the characteristics of scheduling and replication
algorithms in Desktop Grids. It has the form of a simulation model of the process
of computational experiment in a Desktop Grid with heterogeneous unreliable
computational nodes and heterogeneous by complexity tasks.
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The key features of the simulator program are: simulation of the compu-
tational process on the BOINC platform; implementation of various probability
characteristics of the process; implementation of various heuristics of replication.

The main part of the simulator program is a computational module that
simulates tasks distribution over Desktop Grid nodes, collection and processing
of results. The varied characteristics of the simulated Desktop Grid are being
identified before simulation. The program is implemented in C++.

Empirical distribution functions of task execution time on the nodes and of
the task complexities were calculated using statistics of RakeSearch project [12]
during its first computational experiment. For the completed tasks, the database
field elapsed_time was used to construct an individual distribution function for
every individual node.

In order to model unreliability of the nodes, we distinguished the following
result outcomes that are set by the client and appeared at least once during the
RakeSearch experiment:

– the task was completed successfully;
– the task could not be sent to the client;
– the task started on a node but failed to complete;
– the task was lost (deadline was missed);
– the task was completed, but the result was considered invalid.

The simulation experiments were conducted on a Desktop Grid model with
301 nodes and 300 tasks. The deadline was set to one week, the quorum to one.
We considered unreliable nodes with the probability 0.1% of missing a deadline,
0.1% of a computational error or a validation error.

In an experiment, up to 2/3 tasks were replicated. Thus, with 300 initial tasks,
up to 500 replicas were generated. All events of missing deadline/computation
error/validation error occurred in the 1000 experiments with a proper frequency
to evaluate the effect of replication.

In Table 1, we provide the experimental results. The table presents tail length
with and without replication, the average lost CPU time on a single node and the
total number of lost replicas (i.e. not needed ones), under different replication
strategies. The CPU time is considered lost if a node spent it on executing a task
already completed by someone else. According to the BOINC mechanisms, we
suggested that the server does not notify the nodes about such tasks immediately.
Although in BOINC such “never needed” results are rewarded as usual ones to
encourage participants, we consider this CPU time as wasted.

Overall, replication in “tail” phase proves to be efficient at a cost of wasted
CPU time for computing extra replicas. With the maximal number of replicas
Rmax = 2 (i.e. each task is additionally replicated at most once), “tail” length
decreases by a factor of 50–100. With further increase of Rmax, “tail” length and
the average lost time do not show significant increase because the extra replicas
are actually never generated.

The strategies (1) and (2) perform better in terms of wasted replicas. They
experimentally proved to select for the replication such tasks that were highly
possible to fail.
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Replication
strategy Default tail length Optimized tail length Average lost

CPU time
Replicas lost

in tail
(1) 607 905 9 454 (2%) 3 468 181
(2) 607 974 9 552 (2%) 3 476 181
(3) 608 047 11 972 (2%) 3 527 197
(4) 607 992 11 756 (2%) 3 533 197
(5) 607 984 11 019 (2%) 3 506 194

Table 1. Results of simulations averaged by 1 000 experiments. Considered replication
strategies: (1) – replication of a task that would finish the latest; (2) – replication of
a task with the largest expected computational time; (3) – replication of a task that
started the first; (4) – replication of a task that started the latest; (5) – replication of
a random task.

More experiments will follow to determine the best replication strategy for a
set of Desktop Grid nodes with given probabilistic characteristics and their sub-
sets basing on analytical investigation of the model and simulation experiments.

5 Conclusion

The problem of “tail” completion is urgent in Desktop Grids due to the unrelia-
bility of their nodes. With multiple possible deadline violations and requeueing
the tasks, the results can be significantly delayed, negatively impacting the re-
search progress. Replication at the “tail” stage of an experiment allows to speed
up its completion by orders of magnitude.

In this paper we address the problem of accelerating the “tail” stage of a com-
putational experiment. We formalize the mathematical model of a final stage of a
computational experiment in a Desktop Grid, describe the setting of simulation
experiments and provide their results.

Task replication in “tail” phase proves to be efficient in decreasing the du-
ration of “tail” by orders of magnitude. The choice of the particular replication
strategy for a certain Desktop Grid requires further investigation, while all con-
sidered heuristics demonstrate high efficiency in simulation experiments.
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