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Abstract. In this paper we describe the experience of setting up a com-
putational infrastructure based on BOINC middleware and running a
volunteer computing project on its basis. The project is aimed at char-
acterizing the space of diagonal Latin squares of order 9 in the form
of an ensemble of orthogonality graphs, previously not addressed. We
implement the search for row-permutational squares orthogonal to an
initial one, which allows to reconstruct the full graphs. We provide the
developed application to search for orthogonal pairs of the squares and
describe the obtained results. The results prove the efficiency of volun-
teer computing in unveiling the structure of the space of diagonal Latin
squares.
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1 Introduction

1.1 Orthogonal Diagonal Latin Squares

A Latin square (further LS) of order N is an N ×N array filled with elements
from a finite set of size N in such a way that all elements within a single row or
single column are distinct. A Latin square is called diagonal (further DLS) if all
elements in both its main diagonal and main back-diagonal are distinct.

Two diagonal Latin squares A = {aij} and B = {bij} are called orthogonal
mates (further ODLSs) or Graeco-Latin squares if all ordered pairs (aij , bij),
1 ≤ i, j ≤ N , are distinct. A DLS is called normalized if the elements of its first
row are sorted in ascending order (see Figure 1). It is easy to show that by means
of a bijective mapping of the elements one can normalize any correct DLS, and
the corresponding set of DLSs forms an equivalence class of N ! of them. For a
number of problems, the squares within the equivalence class do not differ, since
they all possess the same properties (existence/absence of an orthogonal mate,



Fig. 1. Normalization of a DLS

the number of transversals etc.), which allows to significantly reduce the runtime
in any corresponding computational experiment.

Latin squares find their applications in different areas [1]: in graph theory [2],
the design of experiments [3], tournament scheduling [4], cryptography [5], en-
coding methods with error control for information transmission [6]. In theoretical
combinatorics, a known unsolved mathematical problem is to find a triple of mu-
tually orthogonal DLSs of order 10 or to prove that it does not exist [7].

In applications, it is important to know the structures of ODLSs subsets.
However, the spaces of DLSs of order 9 or more have not been explicitly enu-
merated or described due to their large size. The presented work is aimed at
directed research of the space of DLSs of order 9 using volunteer computing.

The systems of DLSs of order 9 connected by orthogonality relation have
not been described before, excepting the case when all squares of a set are
mutually orthogonal. Construction of ODLSs of orders 7 and 8 showed that
row-permutational ODLSs can constitute parts of such systems. In the proposed
work, the search is performed among the subset of such squares that can be
obtained by rows permutations (with fixed first row) and are orthogonal to the
initial square.

1.2 Desktop Grids

Desktop Grid is a distributed computing system that gathers together desktop
computers, servers and/or other heterogeneous computational resources con-
nected by the Internet or a local network and working for the Desktop Grid
in their idle time. Traditional high-performance computing systems can be in-
tegrated into Desktop Grids as well [8]. The BOINC middleware [9] is often
considered a de-facto standard for organizing Desktop Grids, as it is being ac-
tively developed and has been successfully used in many computational projects
since 1997.

The BOINC system has a server-client architecture: a server distributes inde-
pendent tasks to the nodes which perform computations and return the results
to the server for further processing. Such division of a large resource-demanding
computational problem into many independent tasks allows to solve it efficiently
in a shorter time.



1.3 Search for Orthogonal Diagonal Latin Squares Using Desktop
Grids

There are plenty of works that have used computers for finding or enumerating
combinatorial structures based on Latin squares [10–14], in particular BOINC-
based Desktop Grids [15–18].

The problem of characterizing subsets of ODLSs (as well as DLSs and LSs)
fits well for implementation in Desktop Grids. The volunteer computing project
SAT@home [19] searches for the pairs of ODLSs of order 10 and their systems
using SAT methods within solving the problems of cryptoanalysis. The volunteer
computing project Gerasim@home [20] performs search for the systems of ODLSs
of order 10 and estimate some characteristics of DLSs of small order such as the
minimal and maximal numbers of their transversals, number of symmetric and
double symmetric squares, etc.

At the same time, the systems of ODLSs of order 9 have not been described,
excepting the case when all squares of a set are mutually orthogonal. In this work,
we describe the volunteer computing project RakeSearch [21] aimed at finding
and describing such systems. The project is implemented basing on BOINC
middleware within the grid segment of the Center for Collective Use of Kare-
lian Research Center of the Russian Academy of Sciences [22]. The experience
of building the computational infrastructure and porting the developed search
application to it are described in [23].

In the rest of the paper we describe the details of implementing the volunteer
computing project and the obtained results.

2 Setup of the BOINC-based Desktop Grid

2.1 Server Infrastructure

At the moment, the project server works in a virtual machine which has 40 Gb
hard drive and 8 Gb RAM. It is more than sufficient for supporting its work.
On the average, 120 thousand of workunits are being processed every day; the
average real performance of the project fluctuates within the range from 125 to
175 TeraFLOPS.

2.2 An Approach to Fast Discovery of Orthogonal Diagonal Mates

The total number of Latin squares of order 9 is 377 597 570 964 258 816 [24]. A
classical method to search for ODLSs is the Euler-Parker approach which results
in relatively slow discovery rate (about 2000 DLSs per second for order 9). It
was noticed that the search among row-permutational squares (the ones obtained
from an initial square by permutations of its rows) allows to find ODLSs much
faster, resulting in the rate about 44–92 thousand DLSs per second depending
on the optimization level. Such approach became the basis for the RakeSearch
project. Figure 2 shows an example of row-permutational ODLSs of order 9.



Fig. 2. Example of a pair of row-permutational ODLSs

2.3 Algorithm of Search for Row-permutational ODLSs

Each instance of a workunit sent to a participant of the project is defined by a
mask of a DLS with pre-filled first row, main and secondary diagonals and the
first element of the second row (Figure 3).

Fig. 3. Example of an input file for the workunit: the mask of a DLS

The overview of the computational algorithm is as follows:

1. Launch;
2. Verify the existence of the checkpoint file and the input parameters file;
3. Set the state of the computational process basing by the content of either

the checkpoint file or the input parameters file (if the former is absent);
4. Search for row-permutational DLSs.

The input data are:

– newSquare — a matrix of a partially filled DLS;
– path[l][2] — two-dimensional array of length l, where l is the count of

square cells to be filled, and (path[i][0], path[i][1]) are the coordinates
of a square cell to be filled according to the i-th position in the bypass
path of the square. When bypassing the square, we can return to the same
path[i] but with different values;

– keyRowId, keyColumnId, keyValue — coordinates of the “key cell” and its
value indicating the end of search.



The variables of search are:

– cellId — the number of a cell in path according to which we are filling one
of the square cells;

– columns[n][n], rows[n][n], primary[n], secondary[n] — flag arrays in-
dicating the use of cell values in columns, rows and diagonals;

– cellsHistory[n][n][n] — flag arrays indicating the previous use of cell
values in the process of square filling (history of the cell values).

Bypass the matrix newSquare according to the path until the value in the
key cell reaches the given one;

4.1. Fill the next cell of newSquare:

Look through the possible values of the cell, from 1 to n. If we managed
to find such i-th value that has not been used in these row and column
and has not been written in the history of cell values, then remember it
and:

a) Write the found value into the square;

1) If the square cell already contains a value, remember it;
2) Write the found value into the square matrix;
3) Write the fact of using the value into the flag arrays;
4) Unset the flags of using the previous value of the cell in the flag

arrays, but not in the history of the cell values!
5) Step forward on the bypass path of the square (path);
6) If we have reached the path end, then the square is filled, a DLS

is formed; call the row-permutational search for ODLSs for the
obtained DLS.

Otherwise:
b) Due to inability to fill the current cell with a new value, return to

the previous cell:

1) For the value written into the current cell, unset the flags of its
usage;

2) Write into the current cell an “empty value”;
3) Clear the history of values for the current cell;
4) Step backward on the bypass path of the square (path).

The algorithm of search for orthogonal diagonal mates by rows permutations
does permute the rows using the similar flag arrays, and after each permutation
checks the resulting square for orthogonality to the initial one.

The search can be further optimized. The initial algorithm uses ordinary
C++ arrays as the flag arrays. But if one replaces them with bit arrays and
performs the search for the first free element using BSF instruction called by the
functions BitScanForward (in case of Visual C++) and builtin ffs (in case
of GNU C++), then one can remove the corresponding loops of search from the
program making it faster.

The program code is available online [25].



3 RakeSearch Project

The application was implemented for Linux 32- and 64-bit, Windows 32- and
64-bit and Android ARM. The average running time of a workunit was about 5
hours for the default application and 30 minutes for the optimized application.
Deadline was set to one week, the quorum was 2.

Orthogonal pairs of row-permutational DLSs have been found since the very
first weeks of the project’s work. Having assigned badges for their discovery, we
attracted more volunteers to participate.

In December 2017, the first discovered graph of ODLSs was published on the
project webpage. All discovered pairs of orthogonal DLSs are being published
on the project website together with the workunit name and the names of the
participants whose computers found them.

At the end of April 2018, the project experienced a peak load period during
the first competition of BOINC teams. In July 2018, the Formula BOINC [26]
sprint was held on the basis of the project, causing the highest load period ever.
In Figure 4 we provide the results receiving rate in a time interval including
three days before the sprint start, the sprint itself and three days after the sprint
end. Each bar on the diagram shows the number of results received during the
corresponding hour. We see large spikes immediately after the race start and
on the start of the last day of the competition. The results receiving rate was
10–15 times more than the average of the usual load. Such period of a high load
revealed the bottleneck components of the server to be the database parameters
for RAM caching, hard drive I/O performance and low paralellization of server
daemons.

Basing on the results of the sprint, we optimized the MySQL instance serv-
ing the project database, and modified the algorithm of data archiving. These
modifications will provide the basis for other periods of high load and improve
the project scalability in general.

4 Results of the Project

At the time of June 2019, the RakeSearch project has been running for 22
months. With about 3000 active computational nodes belonging to more than
600 participants, its maximal daily average performance corresponded to the
performance of a 100 TeraFLOPS cluster.

Such amount of available computational resources allowed to complete more
than 23 million workunits in 22 months. The search results are represented in
form of orthogonality graphs, where the vertices are DLSs of order 9, and there
is an edge between two vertices if the corresponding squares are mutually or-
thogonal. Such graphs are undirected, without loops and multi-edges.

In total, 175 unique types of orthogonality graphs have been found in the
project. Their sizes vary from 2 vertices and one edge to 649 728 vertices and
3 178 752 edges. We present 20 largest graphs in Table 1. One square per the
each of graphs are presented in string representation (elements of the square are



Fig. 4. Results receiving rate during the high server load

written from left to right in each row and from top to bottom row). In Figure 5,
we provide the first discovered graph which has 48 vertices and 123 edges.

Some graphs that were found earlier during investigating properties of cen-
tral symmetry [27] of DLSs for this moment are not present in the list which
means they do not contain row-permutational square pairs. Some graphs found
within the project probably may have a coinciding number of vertices and edges,
however, they may not be isomorphic, which requires a separate study. All dis-
covered graphs are visualized using the Gephi software [28] and published on the
project website.

5 Conclusion

We have described the start-up of a volunteer computing project aimed at char-
acterizing the space of diagonal Latin squares of order 9 and the experience of
running it for 22 months. During this time, 175 unique types of orthogonality
graphs have been found in the project. The obtained results prove the efficiency
of distributed computing in unveiling the structure of the space of DLSs.



Fig. 5. The “Necklace” graph of orthogonal diagonal Latin squares of order 9
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Table 1. Largest graphs of orthogonal diagonal Latin squares of order 9 obtained in the RakeSearch project.

Graph No. Vertices Edges Square

1 150 1194 012345678423076815781603542648532701154860237830457126267184350506721483375218064

2 154 1263 012345678427683510561824307736450182350268741148537026604712853875106234283071465

3 164 1383 012345678127850346861703524204671853745138062456287130380526417573064281638412705

4 176 912 012345678425681730563027481137456802348570216704168523680234157851702364276813045

5 181 1321 012345678523874016271480563160532784384761205756028431847106352635217840408653127

6 208 1412 012345678628134705831207564467582310504761283785413026243076851370658142156820437

7 210 1524 012345678526814037471683250763450821305168742284537106857206314640721583138072465

8 212 1104 012345678123857046451286730637412805574063281740138562865701324208674153386520417

9 224 1112 012345678124857306453786120701624853346578012867201534285130467530462781678013245

10 292 1882 012345678423076815781653042648532701504861237835407126267184350156720483370218564

11 294 2234 012345678826057143481763025374681502540132867657208431235410786163874250708526314

12 368 1864 012345678628174305871203564463582710504861237385417026247036851730658142156720483

13 2388 7752 012345678627134805871603524380457162504861237735218046463582710248076351156720483

14 4048 6968 012345678825431760603857142451602387168274053746018235384726501237580416570163824

15 9056 45976 012345678128604537261758403873421056540863721654237810485170362307516284736082145

16 44160 231744 012345678720683514841237056473502861154760283365478102687014325238156740506821437

17 58368 546048 012345678725801346163728054538416720286053417604287135451672803870134562347560281

18 61824 374064 012345678423618750851720463780453126375861042638207514267534801504186237146072385

19 113616 675264 012345678421806537153280764508671342780453126834067215376128450645712083267534801

20 649728 3178752 012345678527186043631870524853421760745068132104237856280654317476503281368712405
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